
Distributed by Raymarine

Any reference to Raytheon or RTN in this manual should be interpreted as Raymarine.
The names Raytheon and RTN are owned by the Raytheon Company.

Autohelm STACOO

AUTOPILOTOperation and Installation

ST1000 Autopilot

Contents

	_	
Safety	Introduction	Specifications
	on	tions
	:	
		:

Basic Operation

Advanced Operation

Chapter 2: Using 'Track Control' and 'Wind Trim'

Illorallatio

Specifications

- Power Supply
- 10 to 15V d.c.
- Current consumption
- Standby: 65mA (120mA with lighting)
- Auto: between 0.5A and 1.5A depending on boat trim, helm load and sailing conditions
- Operating temperature
- 0°C to +70°C
- 6 button digital keypad
- LCD display of heading, locked course and navigational information
- User calibration for optimum performance
- Wind trim control in wind vane mode
- SeaTalk compatible
- Automatic compass deviation correction
- Northerly/Southerly heading compensation
- Automatic heading deadband
- Automatic tack
- Built-in radio navigation interface
- Waypoint advance feature

Introduction

installation and after connection to the yacht's 12 volt electrical system will single attachment point on the yacht's structure. It is designed for owner tiller steered yachts. The autopilot is mounted between the tiller and a be ready for use. our Autohelm ST1000 is a totally self contained autopilot designed for

transmitted from other Autohelm SeaTalk instruments: The ST1000 is SeaTalk compatible and therefore can share all data

- Wind information from a wind instrument can be used for windvane steering without the need to install a separate vane
- Track information from either Navdata or Navcenter instruments provides waypoint control from the autopilot
- Boat speed from the Speed instrument for optimum Track keeping
- SeaTalk compatibility also allows additional fixed and handheld autopilot control units to be easily connected at secondary steering and control

position transducer (GPS, Decca, Loran) transmitting NMEA 0180 or When used with a SeaTalk interface the ST1000 can be used with any

performance with many types of boats. The ST1000 can be calibrated to suit each installation giving maximum

Important Note

ocean sailing, one of the more powerful Autohelm autopilots duty applications, such as single handed racing or long distance (ST2000,ST4000 Linear) is advised. 7,000 lbs (3,200kg) displacement. Above this limit and for heavy The ST1000 is recommended for tiller steered vessels upto

Safety

Passage making under autopilot can greatly increase the pleasure of the voyage and ensure the crew can relax. However, this can lead to a dangerous lack of attention to basic seamanship. The following rules should always be observed:

- Maintain a permanent watch and check regularly all round for other vessels and obstacles to navigations. No matter how clear the sea may appear a dangerous situation can develop rapidly
- Maintain an accurate record of the vessel's position either by use of a radio navigation receiver or visual bearings.
- Maintain a continuous plot of position on a current chart. Ensure the locked autopilot heading steers you clear of all obstacles. Make proper allowance for Tidal Set—the autopilot cannot!
- Even when your autopilot is locked to the desired Track using a radio navigation receiver maintain a log and a regular positional plot. Radio navigation signals can produce significant errors under some circumstances and the autopilot cannot detect this situation
- Ensure that all members of crew are familiar with the procedures required to disengage the autopilot

Your Autohelm ST1000 will add a new dimension to your boating enjoyment. However, it is the responsibility of the skipper to ensure the safety of the vessel at all times by careful observance of these basic rules.

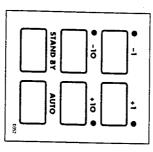
Basic Operation

Contents

Off Course Alarm	Automatic Deadband Control (Auto seastate)12 Automatic Tack (Autotack)13	Windvane Mode (Windtrim) 11	Course changes (-1, +1, -10, +10)9 Dodge10	Standby8 Auto8	1.1 Basic principles8 1.2 Operator controls8	Chapter 1: Operation7
14 14 15	12	11	10	8 8	8	7

Chapter 1: Operation

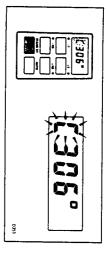
1.1 Basic principles


When switched on, the ST1000 will be in 'Standby' mode. To select automatic steering simply steady the vessel on the required heading, place the actuator over the tiller pin and push **Auto**. At any time to return to manual steering release the clutch and push **Standby**.

Autopilot control has been simplified to a set of pushbutton operations, all of which are confirmed with a 'beep' tone. In addition to the main single key functions there are several dual key press functions. Course changes can be made at any time using the -1, +1, -10, and +10 degree keys.

Passage making under automatic pilot is a very pleasant experience which can lead to the temptation of relaxing permanent watch. This must always be avoided no matter how clear the sea may appear to be.

Remember, a large ship can travel two miles in five minutes - just the time it takes to make a cup of coffee.


The next few pages list all of the pushbutton operations needed for full autopilot control.

Chapter 1: Operation

1.2 Operator controls

Standby



Push to disengage the autopilot for hand steering

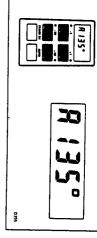
The previous auto heading is memorised and can be recalled using the **Auto** key (see 'Auto').

In 'Standby' the display shows the vessels current compass heading.

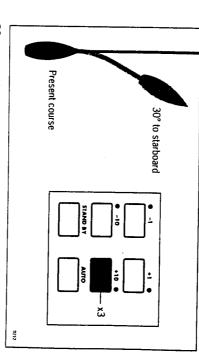
Auto

Push to engage automatic steering and maintain current heading in 'Auto' the display shows the locked autopilot heading.

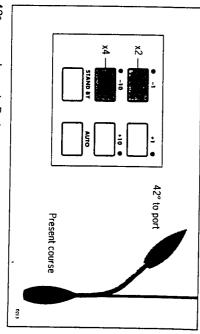
If for any reason the vessel is steered away from the selected locked heading (e.g. Dodge manoeuvre or selecting 'Standby') then:


Push and hold down Auto for 1 second

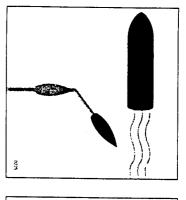
The previous locked heading will be flashed for 10 seconds. To select this heading, and resume the original course, press the **Auto** key once within 10 seconds.

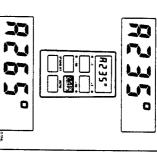

Also see 'Dodge' – page 10.

7

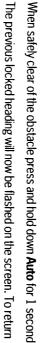

Course changes (-1, +1, -10, +10)

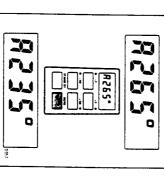
■ Push to after course to Port (-) and Starboard (+) in increments of 1° and 10°



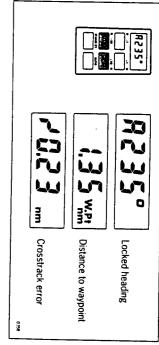

30° course change to Starboard

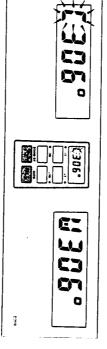
42° course change to Port


change in the appropriate direction (say starboard $30^{\circ} = 3 \times +10^{\circ}$). In order to avoid an obstacle under autopilot control select a course



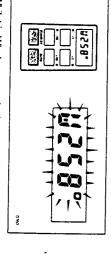
to the old course press Auto within 10 seconds.


example: 3 x -10°. Alternatively the previous course change can be reversed via the key pad


'Track Control'

■ Push +10 and -10 degree keys together to select 'Track Control' from Auto. Push again to return to automatic steering

for more details. up on a GPS/Decca/Loran navigation receiver, see 'Advanced operation' Once in 'Track Control' the autopilot will follow a predetermined track set


Windvane Mode (Windtrim)

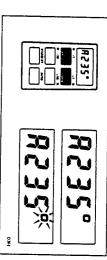
Push Auto and Standby together to select Windtrim' and maintain the current apparent wind angle

wind angle (ie. Dodge manoeuvre or selecting Standby) then: If for any reason the vessel is steered away from the selected Apparent

Push and hold down for 1 second both the Auto and Standby keys together to return to the previous Apparent wind angle

Whilst in Windvane mode the control head will beep once every 30

Automatic Tack (Autotack)


■ Press the +1 and +10 degree keys together to Tack through 100° to

compass and vane modes.

through 100° in the required direction. This feature is available in both The ST1000 has a built in automatic tack facility which will turn the vessel

starboard

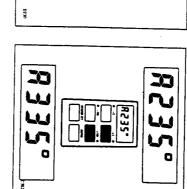
Automatic Deadband Control (Auto seastate)

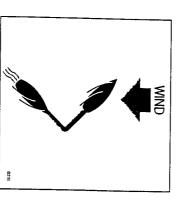
Press the +1 and -1 degree course change keys together to toggle will flash when the fixed minimum dead band is selected between auto deadband and fixed minimum deadband. The degree sign

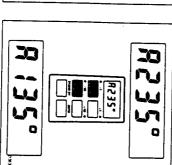
This can only be done with the Autopilot in 'Auto' mode.

rudder movements. consumption and course keeping accuracy by neglecting unnecessary variations in course. This provides the best compromise between power neglect repetitive movements of the vessel and only respond to true 'Automatic deadband' (Auto seastate) will cause the pilot to gradually

unit activity. possible but at the expense of increased power consumption and drive 'Minimum deadband' will always provide the tightest course keeping

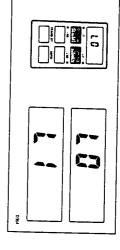






9

■ Press the -1 and -10 degree keys together to Tack through 100° to port



Illumination

Illumination for the control head display can be switched on for night time viewing. This can only be done with the autopilot in 'Standby' mode

■ Press the +1 and -1 keys together to toggle illumination on and off Also if other SeaTalk instruments or autopilot control units are connected to the SeaTalk bus the illumination on the ST1000 can be switched on or off from these units.

Off Course Alarm

The off course alarm will sound if the locked autopilot heading and the vessels current heading differ, for greater than 20 seconds, by more than the value set in calibration level 6.

To cancel the off course alarm push **Standby** to return to hand steering. If the off course alarm sounds it is usually an indication that the vessel is carrying too much sail, or that the sails are badly balanced. In this case a significant improvement in course keeping can usually be obtained by improving sail balance.

1.3 Operating hints

It is very important to understand the effect of sudden trim changes on steering performance. When a sudden trim change occurs, due for example to weather helm or sail imbalance, there will be a delay before the automatic trim applies rudder to restore the locked heading. This correction can take up to one minute. Large course changes which change the apparent wind direction can produce large trim changes. In these cases the autopilot will not immediately assume the new automatic heading, and will only settle onto course when the automatic Trim has been fully established.

To minimise the time delay the following procedure may be adopted for large course changes.

- Note required new heading
- Select Standby, remove the autopilot from the tiller pin, and steer manually
- Bring vessel onto new heading
- Place the autopilot on the tillerpin, select **Auto** and let vessel settle onto course
- Bring to final course with 1° increments

It is sound seamanship to make major course changes only whilst steering manually. In this way any obstructions or other vessels may be cleared properly and due account taken of the changed wind and sea conditions on the new heading prior to engaging the autopilot.

In gusting conditions the course may tend to wander slightly, particularly in the case of a sailing yacht with badly balanced sails. In the latter case, a significant improvement in course keeping can always be obtained by improving sail balance. Bear in mind the following important points:

- Do not allow the yacht to heel over excessively
- Ease the mainsheet traveller to leeward to reduce heeling and weather helm
- If necessary reef the mainsail a little early

It is also advisable whenever possible to avoid sailing with the wind dead astern in very strong winds and large seas.

Ideally, the wind should be brought at least 30° away from a dead run and in severe conditions it may be advisable to remove the mainsail altogether and sail under headsail only. Provided these simple precautions are taken the autopilot will be able to maintain competent control in gale force conditions.

Advanced operation

ST1000 can be fine tuned. This is normally required if: steering system many of the functions and features available in the for most types of boat. Depending on personal choice, type of boat and The ST1000 has been set-up at the factory to provide stable performanc

- The pilot does not maintain a selected heading
- The boat appears to be unstable on Northerly headings (Southerly headings in the southern hemisphere)
- You wish to display True compass headings
- You operate in 'Track Control' mode
- You wish to change the Off Course alarm angle

can also be maintained if the ST1000 is connected to a wind transducer. tidal streams and leeway. Courses relative to the apparent wind direction such as a GPS, Decca or Loran receiver - automatically compensating for The ST1000 is also capable of being supervised from a Navigation syster

supervisory modes. It also shows how the system can be expanded to include other Seal alk products. comprehensively covers operation in both 'Track Control' and 'Wind Trim' 'Advanced Operation' offers a complete guide to ST1000 calibration and

Chapter 2: Using 'Track Control' and 'Wind Trim'

2.1 Operation in Track Control

points entered on a GPS, Decca, or Loran based Navigation system. Track Control' allows the ST1000 to maintain track between two way-

Operating hints

the following sources: The Autopilot can receive cross track error data via the SeaTalk bus from

- ST50 Navdata
- ST50 Navcenter
- ST6000 Autopilot Control Unit
- ST7000 Autopilot Control Unit
- SeaTalk Interface Box

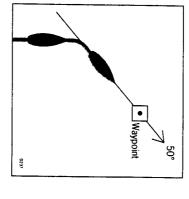
automatically compensating for tidal streams and leeway course changes which will keep your boat on a pre-determined track, ting data to the NMEA 0180 or 0183 format. The ST1000 will then compute Note: All of the above must be connected to a Navigation system transmit-

When initiating Track Control' the track can be acquired in one of two

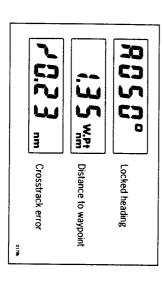
- Automatic acquisition (NMEA 0183 Cross Track Error and Bearing to Waypoint data required from the receiver)
- Manual acquisition (NMEA 0180 or 0183 Cross Track Error data required only)

entering 'Auto' and then pressing the + 10 and -10 degree keys together waypoint. The pilot is then switched over to 'Track Control' by firstly error and the locked pilot heading. to initiate 'Track Control'. The Display will alternate between Cross track track and then bringing the heading to within 5°, of the bearing to the next Manual acquisition is achieved by steering the vessel to within 0.1 nm of

track error and bearing to waypoint information via the SeaTalk bus. It is Automatic acquisition can only be achieved if the pilot is receiving Cross initiated as follows:


- Bring the vessel to within 0.1nm of Track
- Press +10 and -10 degree keys together to enter Track Control

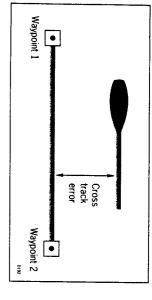
An alarm will sound and the display will show:


Check that it is safe to turn onto the new course. the boat will turn to take up the track and the new bearing to waypoint. The information on the display alternates between the direction in which

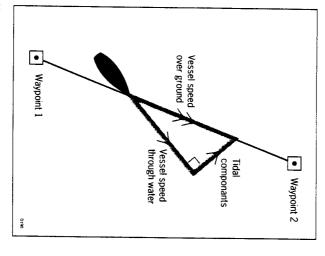
■ Press the +10 and -10 degree keys together

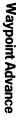
The boat will now turn on to the new course and the alarm will cancel

display: The following navigation information will now be continuously cycled on th



Cross Track Error


displayed in nautical miles and is read directly from your position trans-Cross track error is the vessel distance from a planned route. This is ducer (see above)



Tidal Stream Compensation

±0.05nm (300ft) or better. Under most conditions 'Track Control' will hold the selected track to within

otherwise the cruise speed entered during calibration level 5 will be used speeds. If an Autohelm ST50 Speed or Tridata instrument is connected to changes to ensure optimum performance over a wide range of vessel the SeaTalk bus the control head will use measured vessel speed, The autopilot takes account of vessel speed when computing course

to Waypoint' NMEA headers it is possible to advance from one waypoint to If your navigation receiver transmits valid 'Waypoint Number' and 'Bearing

the next by simply pressing the -10 and + 10 degree keys together.

accompanied by an alarm to indicate waypoint arrival (see page 25) waypoint and also the direction it will turn to acquire it. This will be will detect the new target waypoint number and display the new bearing select, manually or automatically, the next target waypoint. The ST1000 As the vessel passes the target waypoint the navigation receiver should

continue to sound and the current course be maintained. Unless the 'Waypoint Advance' is accepted in the above way the alarm wi waypoint arrival alarm and steer the boat towards the next waypoint. check should be made to verify it is safe to turn onto the new track and then the +10 and -10 degree keys pressed together. This will cancel the suspended and the ST1000 will maintain the current boat heading. A Note: While the waypoint advance alarm is sounding, 'Track Control' is

Limitations

of track, the transmitted data would still be 0.30nm. ± 0.30 nm, which means that even if the vessel were 5 miles to starboard transmitted by the radio navigation receiver. This data is restricted to these limitations is imposed if NMEA 0180 cross track error data is obtain the best performance from Track Control'. The most significant of keeping algorithm, it is very important to understand its limitations so as t Although there is no need to fully understand the details of the track

be unable to cancel it within the 0.30nm limit leading to the problems the vessel's heading. If the angular error is too great, the 'Track control' wi exceeds 0.30nm The requirement to remain within 0.30nm of track also excessive overshoots and can result in the vessel circling. For this reason outlined above. the alarm code is displayed (see page 24) whenever the cross track error limits the maximum allowable angular error between the track course and Attempts to engage 'Track Control' beyond the 0.30nm limit will lead to

errors. However, the alarm code will still be displayed over 0.30nm in case and enables the 'Track Control' to operate with larger cross track there are navigational hazards close to the intended track. The NMEA 0183 format transmits cross track error data up to 99.99nm

Low Speed Operation

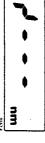
cant than at higher speeds. In general terms, providing the tidal flow is less requires additional care as the effect of tidal streams is far more signifi-Operation of the manual acquisition of 'Track Control' at low speeds

than 35% of the vessel speed no noticeable difference will occur in the performance of Track Control'. However, extra care should be taken to ensure that the vessel is as close as possible to track, and that the direction made good over the ground is as close as possible to the direction of the next waypoint, before engaging Track Control'. Under these circumstances positive positional checks at regular intervals are vital especially if navigational hazards are close.

Dodge

Full control remains available from the keypad when the autopilot is in Track Control. Dodges are accomplished by simply selecting the desired course change on the Autohelm keypad. Once the hazard has been avoided the course change selected for the dodge manoeuvre should be cancelled by selecting an equal course change in the opposite direction. Provided the vessel remains within 0.1nm of track there is no need to steer back towards the track.

Passage making in 'Track Control' removes the chores of compensation for wind and tidal drift and will aid precise navigation. It is most important however to maintain an accurate log with regular plots and to verify the computed position read from the radio navigation receiver with a dead reckoned position from recording the average course steered and the distance logged. In open water such plots should be at least hourly and more frequent in confined waters or when potential hazards are near.


Local variations in radio signal quality and changes in the tidal stream will produce deviations from the desired track. When setting up waypoints, remember that deviations will occur, and thoroughly check along each track and to 0.5nm each side to ensure that there are no hazards within the zone. Always confirm the position given by the position transducer using an easily identifiable fixed object at the start of a passage to check and enable compensation to be made for fixed positional errors.

The use of track control will enable accurate track keeping even in complex navigational situations. It cannot remove the responsibility of the skipper to ensure the safety of his vessel at all times by careful navigation and frequent position checks.

Warning messages

NMEA data not received

The 'no data' display will be shown if Track Control' is engaged when the autopilot is not receiving SeaTalk navigation data.

NMEA data error

The 'data error' display will be shown if 'Track Control' is engaged whilst the Position transducer (GPS, Loran, Decca) is receiving a low strength signal


This will clear as soon as the signal strength improves.

Large cross track error

The 'large cross track error' alarm sounds if the cross track error receiv by the pilot exceeds 0.3nm.

Waypoint advance

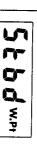
The waypoint advance alarm sounds whenever the Radio Navigation Receiver (GPS, Loran, Decca) changes the target waypoint number. Whit this occurs the pilot will continue on its current heading but flash the bearing to the next waypoint on the display. This will alternate with the direction in which the boat will turn to take up that bearing. You should check to ensure that such a manoeuvre would be safe and, when you are ready to make the turn, momentarily press the +10 and -10 degree key together. The pilot will then turn onto the new bearing and track towards the next waypoint.

Note: The waypoint advance will only operate on pilots receiving bearing waypoint information.

2.2 Operation in Windtrim' mode

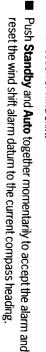
Windtrim' mode allows the ST1000 to maintain course relative to an apparent wind angle. It uses Windtrim' to eliminate the effects of turbulence and short term wind variations and provide smooth precise performance under windvane with minimum power consumption. Windtrim' uses the fluxgate compass as the primary heading reference, and as changes in the apparent wind angle occur the locked compass heading is adjusted to maintain the original apparent wind angle. To use Windtrim the ST1000 must receive wind information from one of the following sources:

- SeaTalk Wind instrument connected to the ST1000 via the SeaTalk bus
- NMEA wind information (connected via the SeaTalk Interface Box (cat no Z137)
- Autohelm wind vane (cat no Z087) connected via the SeaTalk Interface Box (cat no Z137)


Windtrim' filters the windvane output, providing optimum response for offshore conditions where genuine shifts in wind direction occur gradually. In gusty and unsteady inshore conditions it is best to sail a few degrees further off the wind so that changes in apparent wind direction can be tolerated.

It is also important to ensure that the amount of standing helm is minimised by careful sail trim and positioning of the mainsheet traveller.

It is recommended that the headsail and mainsail are reefed a little early rather than too late.


Wind shift alarm

If changes in apparent wind angle adjust the original locked compass heading by more than 15° the wind change alarm will sound

The display will then alternate between the current Wind trim heading and the direction of wind shift.

into danger.

Before doing so verify that the new course datum does not take the vessel

Chapter 3: Adjusting autopilot performance

Setting up Rudder Gain

The factory set rudder gain level will provide stable control for initial sea trials. However, vessels can vary widely in their response to the helm, and further adjustment to the rudder gain may improve the autopilot's steering characteristics.

- Steer onto a specific course
- Hold the course steady for 5 to 10 seconds
- Place the actuator over the tiller pin
- Press Auto to engage the autopilot on the current heading


In calm conditions the boat should maintain the locked heading

The following test will check if the rudder level is set too high or too low

In clear water and with the autopilot in 'Auto' alter course to starboard by 40° by pressing the + **10** degree key four times.

Typically, at cruising speed, a course change of 40° should result in a crisp turn followed by an overshoot of no more than 2° to 5°. If this occurs the rudder gain is correctly adjusted.

An excessively high rudder setting results in oversteer which can be recognised by distinct overshoot of more than 5° (A). This condition can be corrected by reducing the rudder gain setting.

These actions are most easily recognised in calm sea conditions where wave action does not mask basic steering performance.

Refer to chapter 4: 'Autopilot recalibration', for instructions on how to adjust the rudder gain setting.

Repeat the test until a crisp course change with no more than 2° to 5° of overshoot is achieved.

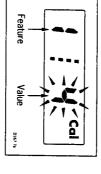
The rudder control setting is not over critical and should be set to the lowest setting consistent with accurate course keeping. This will minimise actuator movements and hence reduce power consumption and wear and tear generally.

Similarly, an insufficient rudder control setting will result in understeer which gives sluggish steering performance (B). If the vessel takes a long time to make the turn and there is no overshoot then the rudder setting is too low.

The ST1000 can be adjusted to meet the characteristics of your vessel and steering system.

The calibration routine allows the following parameters to be adjusted from their factory default settings.

- Rudder gain (Value on power up)
- Off course alarm limit
- Northerly/Southerly turning error compensation

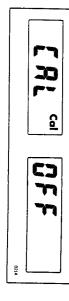

The autopilot also requires certain other information:

- Average cruise speed
- Local variation

This section will look at each feature in-turn and explain how to fine tune it to suit your particular boat.

4.1 Entering calibration mode

Press the Standby button for 5 seconds until the display shows:



The number on the left identifies the feature (see table 4.3) and the number on the right the selected value for that feature.

Each feature can be cycled through using the Auto key.

The existing values can be viewed at any time without atteration, a simple momentary push of the **Standby** key will return the pilot to its normal operating mode without affecting the previous settings.

Note: If on entering calibration the display shows:

Please refer to 'Disabled calibration access' - section 4.5 for details on how to adjust.

Chapter 4: Autopilot re-calibration

4.2 Exiting calibration mode

You can exit calibration at any time in one of two ways:

Press Standby for 1 second

This will enter any adjusted values into memory

Momentarily press Standby

This will exit calibration without entering any adjusted values into memory.

4.3 Suggested initial calibration settings

safe performance for the initial seatrial. Listed below are suggested initial calibration settings. These will provide

Values' column for future reference. If you change any of the settings you can record them in the 'Adjusted

Feature Number	Feature	Setting	Adjusted Values
L	Rudder gain	5	
5	Average cruise speed	œ	
6	Off course alarm angle	20	
9	Local magnetic variation	Off	
10	North/South turning error correction	Off	
11	Current vessel latitude	×	

- 1. Levels 2,3,4,7,8,12 and 13 are not available on the ST1000 pilot.
- 2. If level 10 is set to 0 then level 11 will be ommited

4.4 Calibrating the autopilot to suit your boat.

Calibrate the pilot as follows

Enter calibration mode as described in section 4.1

The display will show:

Calbration Level 1 (Rudder Gain)

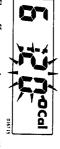
way. Please refer to Rudder gain adjustment in Chapter 3. Calibration level 1 is Rudder gain. This requires setting up whilst under

Calibration Level 5 (Cruise Speed)

control'. Calibration level 5 sets the boats normal cruising speed for use in Track

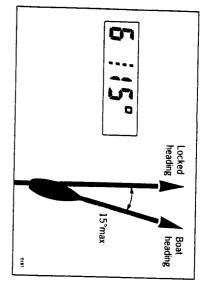
Press the **Auto** key

vessels average cruising speed to perform track calculations. When interfacing with Radio navigation systems the ST1000 uses the


Adjust the cruise speed with the +1 and -1 degree buttons.

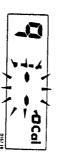
bus they will transmit boat speed information directly to the autopilot. Note: If an ST50 Speed or Tridata instrument is connected to the SeaTalk

Calibration Level 6 (Off course alarm angle)


if the autopilot is unable to maintain its set course. Calibration Level 6 is Off Course Alarm angle. This is an alarm to warn you

Press the Auto key

degree course change buttons. in 1° increments anywhere between 15° and 40° using the +1 and -1than the alarm angle limit for more than 20 seconds. This limit can be set The off-course alarm operates if the autopilot strays off course by more



Calibration level 9 (Magnetic variation)

Calibration level 9 tells the pilot the level of magnetic variation present at the boats current position.

Press the Auto key

You should enter your local variation using +1 and -1 degree keys. This value will then be transmitted onto the SeaTalk bus and picked up by other SeaTalk instruments such as the Multi repeater.

Note: - ve variation: East

+ve variation: West

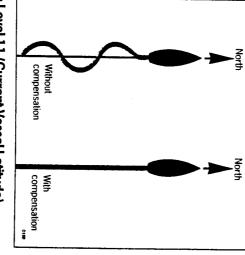
Calibration level 10 (Northerly / Southerly heading error correction)

Calibration level 10 allows Northerly or Southerly heading error correction to be switched in.

It may be noticed that the autopilot tends to be a little less stable on northerly headings in the higher latitudes of the Northern hemisphere (and conversely southerly headings in the Southern hemisphere). This is caused by the increasing angle of dip of the earth's magnetic field at higher latitudes which has the effect of amplifying rudder response on northerly (southerly) headings. This error effects all magnetic compasses and gets worse the further away from the equator you are.

The ST1000 is able to compensate for this and provide precise course keeping on all headings by automatically adjusting the gain of the autopilot depending on heading.

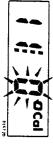
Press the Auto key



Use the +1 and -1 degree keys to select:

0 = Of

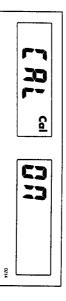
I = Northern Hemisphere


2 = Southern Hemisphere

Calibration Level 11 (Current Vessel Latitude)

Calibration level 11 requires the boats current latitude (to the nearest degree) in order to compensate for Northerly / Southerly heading error

Press the Auto key


■ Set up latitude using the -1 and +1 degree keys

Note: If the correction is set to 0 in calibration level 10 then level 11 will be omitted and pressing the Auto key in calibration level 10 will move the display directly onto level 1

The calibration should now be saved by pressing the **Standby** key for 1 second.

This is achieved as follows:

■ Press and hold the -1 and Standby keys for 10 seconds until the display shows:

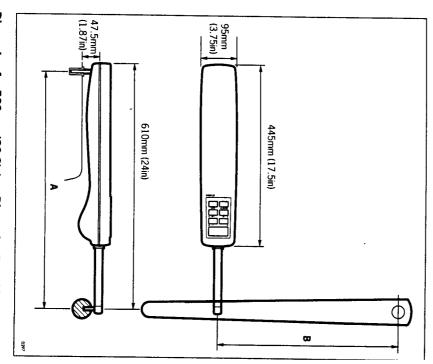
- Toggle the calibration access on and off using the -1 and +1 degree keys
- Store the setting by pressing the **-1** and **Standby** keys for 10 seconds until the control head returns to normal operation

If preferred this page can be removed from the handbook after access has been switched off.

Installation

Contents

Mounting50	SeaTalk data cabling50	Power cabling49	5.3 Cabling and Socket installation48	Tiller pins48	Pedestal socket mounting46	Cantilever mounting45	Tiller brackets43	Pushrod extensions42	5.2 Installation Accessories42	Tiller pin (cat no D001) and Mounting Socket (D002)40	5.1 Basic installation40	Introduction39	Chapter 5: Installation39
------------	------------------------	-----------------	---------------------------------------	---------------	----------------------------	-----------------------	-------------------	----------------------	--------------------------------	---	--------------------------	----------------	---------------------------

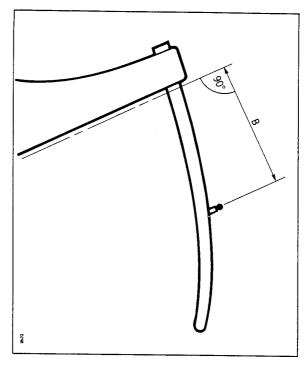

Chapter 5: Installation

Introduction

The autopilot is mounted between the tiller and a single attachment point on the yacht's structure. After connection to the yacht's 12 volt electrical system the unit becomes operational.

Since the autopilot incorporates a magnetic sensing device, it is advisable to ensure that the yacht's steering compass is situated at least 750mm (2ft 6in) away to avoid deviation.

For correct installation two basic dimensions are critical:



Dimension A = 589mm (23.2in)
mounting socket to tiller pin

Dimension B = 460mm (18in) rudder stock centre line to tiller pin

40

Clamp the tiller on the yacht's centre line and mark off dimensions **A** and **B** (**A** is measured on the starboard side of the cockpit) using masking tape to locate the fixing points. Ensure the measurements are at right angles as shown.

The autopilot must be mounted horizontally.

In certain circumstances it may be more convenient to mount the unit on the porthand side. This is perfectly acceptable so long as the dimensions shown for both **A** and **B** are correct.

Note: The unit will require programming for port hand operation. This will be covered during the initial functional test in Chapter 6.

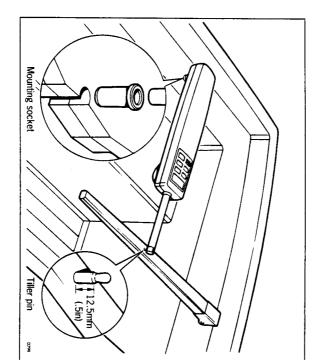
5.1 Basic installation

After establishing the three control dimensions the autopilot can be mounted directly onto the **starboard** cockpit seat.

Proceed as follows.

Tiller pin (cat no D001)

- Drill 6mm (1/4in) hole x 25mm (1in) deep at point marked
- Using a two part epoxy such as Araldite, epoxy the tiller pin into place
- Position the shoulder of the pin 12.5mm (0.5in) above the tiller surface


Chapter 5: Installation

Mounting socket (cat no D002)

- Drill 12.5mm (1/4in) hole x 25mm (1in) deep into the starboard cockpil
 seat
- If the thickness of the mounting position is less than 25mm (1in) carefully reinforce the under surface with a plywood plate epoxied into position
- Install the mounting socket using two part epoxy.

Note: The autopilot is capable of generating high pushrod loads, ensure that

- The epoxy is allowed to harden thoroughly before applying any loads
- All holes are drilled to correct size and where necessary reinforcing is provided

42

ST1000 Autopilot Operation and Installation Handbook

Chapter 5: Installation

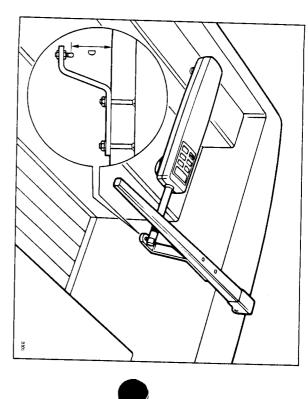
5.2 Installation Accessories

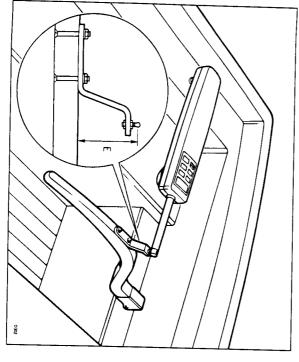
seat/tiller as described one of the followng accessories (or combination) If it is not possible to install your autohelm directly onto the the cockpit will ensure a perfect installation.

Pushrod extensions

pushrod extensions. dimension A is modified as follows: The pushrod length may be simply extended using one of the standard

Dimension C	Pushrod extension length L	Cat no
589mm (23.2in)	Std dimension	1
615mm (24.2in)	25mm (1in)	D003
640mm (25.2in)	51mm (2in)	D004
665mm (26.2in)	76mm (3in)	D005
691mm (27.2in)	102mm (4in)	D006
716mm (28.2in)	127mm (5in)	D007
742mm (29.2in)	152mm (6in)	D008

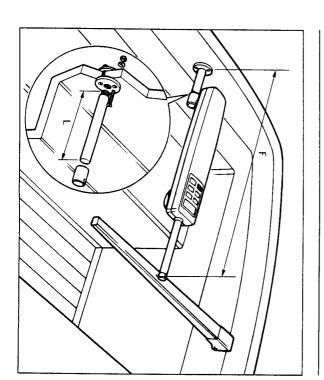



brackets allows the tiller pin offset to be varied. plane is such that standard mounting is not practical a range of tiller Where the height of the tiller above or below the cockpit seat or mounting

Installation

- Position the tiller bracket on the centre line (upper/lower) of the tiller and establish control dimensions A and B
- Mark off the position of the centres of the two fixing bolt holes
- Drill two holes 6mm (1/4in) diameter through the centre line of the tiller
- Install the tiller bracket using 2 x 6mm (1/4in) diameter bolts, nuts and
- Epoxy the fixing bolts in place and fully tighten the nuts

Dimension D (below tiller)	Dimension E (above tiller)	Cat no
25mm (1in)	51mm (2in)	D009
51mm (2in)	76mm (3in)	0100
76mm (3in)	102mm (4in)	D011
102mm (4in)	127mm (5in)	D012
127mm (5in)	152mm (6in)	D013


Where it is necessary to attach the autopilot to a vertical face such as the cockpit sidewall a cantilever socket assembly is used.

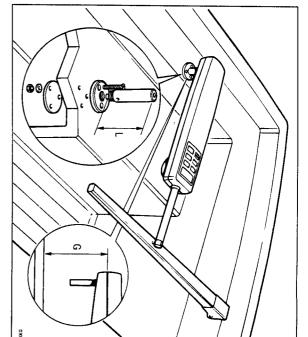
The maximum extension offset is 254mm (10in) and the cantilever length can be cut to the exact length necessary during mounting.

Installation

- Clamp the tiller on the yacht's centre line
- Measure dimension F (actual)
- Refer to table to establish cutting length for cantilever rod. (double check measurements before cutting)

Dimension F	Cut length L
654mm (25.75in)	51mm (2in)
705mm (27.75in)	102mm (4in)
743mm (29.75in)	152mm (6in)
806mm (31.75in)	203mm (8in)
832mm (32.75in)	229mm (9in)

Cut cantilever rod to length **L** using a hacksaw. **Weasure from threaded end**


- Remove burrs with file
- Temporarily assemble the cantilever by screwing the rod into the mounting flange
- Ensure the Autohelm body is horizontal and mark off the location of the mounting flange
- Mark and drill 3 x 6mm (1/4in) holes (ignore the two inner holes)
- Mount the flange using 3 x 6mm (1/4in) diameter bolts with nuts and washers. Be sure to install the backing plate correctly. Bed the flange on a thin coat of silicone sealant
- Screw the rod firmly into place using a tommy bar
- Roughen the end of the rod and the inside of the cap to provide a key
- Apply the two part epoxy adhesive provided to the rod end and cap and place the cap over the rod end.
- Ensure the hole for the Autohelm mounting pin is facing up
- Allow the epoxy 30 minutes to fully harden before applying any load
 When the Autohelm is not in use the complete rod assembly may be unscrewed, leaving the cockpit uncluttered.

Pedestal socket mounting

It may be necessary to raise the height of the Autohelm mounting socket above the mounting surface. For this a pedestal socket assembly is used

Selection

- Lock the tiller on the yacht's centre line
- Establish the standard control dimensions A (589mm (23.2in)) and B (460mm (18in))
- Measure dimension G ensuring the Autohelm actuator is horizontal

- Select the appropriate pedestal socket assembly from the table showr
- Mark off the position of the mounting flange on the cockpit seat or counter
- Ensure that control dimensions A and B are correct
- Mark and drill 3 x 6mm (1/4in) diameter holes (ignore the two inner holes)
- Mount the flange using 3 x 6mm (1/4in) diameter bolts, nuts and washers, being sure the back plate is installed correctly. Bed the flange on a thin coat of silicone sealant
- Screw the mounting socket firmly into place

When the Autohelm is not in use the mounting socket may be unscrewed to leave the cockpit uncluttered.

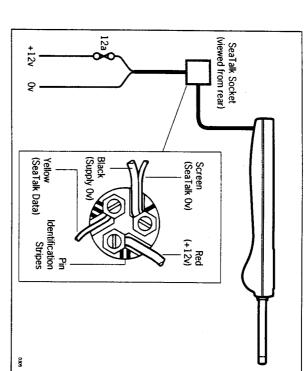
Tiller pins

For certain non-standard installations a range of tiller pins are available

Description	Size	Cat no
Small threaded tiller pin	25mm (1in)	D014
Extra length tiller pin	72mm (2.8in)	D020
Extra length threaded tiller pin	72mm (2.8in)	D021

5.3 Cabling and Socket installation

dedicated power supply. cannot source power from the SeaTalk bus and therefore requires its own to other instruments and autopilot control units via the SeaTalk bus. It The ST1000 is SeaTalk compatible receiving and transmiting information


mounted in the cockpit area adjacent to the autopilot. plug and socket. The plug comes ready assembled and the socket can be Both power and data are supplied to the ST1000 via a custom waterproof

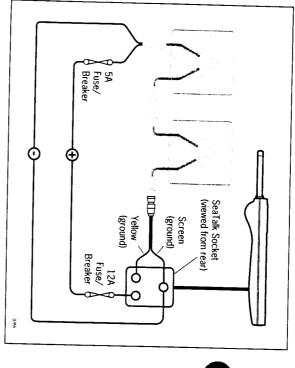
Chapter 5: Installation

Power cabling

and protected via a 12A fuse or circuit breaker as shown: Power should be routed directly from the vessels central distribution panel

power supply: The following table shows the minimum cable size acceptable for the

Up to 4.0m (13ft)	Up to 2.5 m (8ft)	Cable length
2.5mm2	1.5mm2	Copper area
14	16	AWG

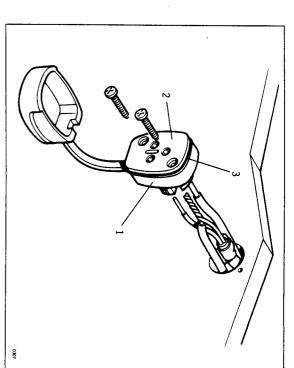

Important

Correct cable size is critical for correct autopilot operation.

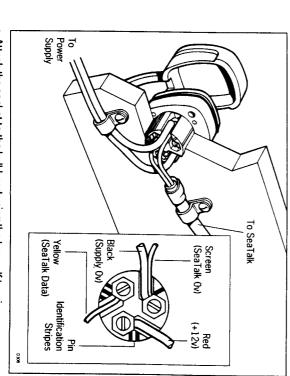
too small, will drop voltage between the supply and the autopilot. This will reduce the power at the tiller. The cable you choose may meet the required current specification but, if

SeaTalk data cabling

The ST1000 is wired to the SeaTalk bus using an extension cable (Cat No D131). It can be plugged directly to the spare SeaTalk tail on the last instrument or autopilot control unit, cut to length and then connected to the back of the SeaTalk socket as shown.



The fuse used with the ST1000 is too large to offer safe protection to the SeaTalk bus. Any SeaTalk Instruments fitted must therefore be powered via a separate 5A fuse/breaker as shown above.


Mounting

The socket is assembled as follows:

- Fix the self adhesive template onto the bulkhead at the selected socket location
- Carefully drill the 18mm (23/32in) clearance hole and 2.4mm (3/32in) pilot holes. Remove the template
- Fit the plug cap (1) to the socket body (2) as shown
- Locate the 'O' ring seal (3) into the groove between the plug cap and socket body

- Cut and strip back the SeaTalk and power cables
- Thread both cables through the bulkhead hole and wire into the socket as shown making sure the wires are connected to the correct pin

- Attach the socket to the bulkhead using the two self tapping screws supplied
- Restrain cables as shown

Chapter 6: Functional Test and Initial Sea Trial

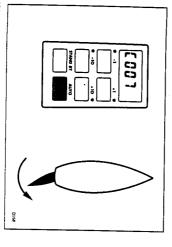
Chapter 6: Functional Test and Initial Sea Trial

also set-up to suit your type of boat. short sea trial. This will confirm that the system is wired correctly and is This section of the handbook consists of a set of simple tests followed by a

6.1 Functional test

Switch on

Having installed your ST1000 autopilot, switch on the main power breaker.


to chapter 9 - 'Fault finding'. compass heading preceded by a flashing 'C' should be displayed e.g. C' 234. This shows the autopilot is active. If it does not beep please refer The autopilot should beep and display ST1000. Within 2 seconds a

applied when a course change button is pressed or the vessel goes off course. It can be checked as follows: The operating sense of the autopilot defines the direction helm will be

- Place the pilot over the tiller pin
- Press +10°

The helm should move to produce a turn to Starboard.

- for instructions on how to reverse the sense. If it moves to port then please refer to page 57 - Operating sense reversal

Navigation interface (GPS, Decca, Loran)

be simply checked as follows: If the ST1000 is interfaced to a position transducer, then the interface can

- Set up a Track on the position transducer to give a cross track error of between 0 and 0.3 nm
- Enter 'Auto' mode by pressing the Auto key
- Enter 'Track' mode by pressing +10 and -10 degree keys together After 3 seconds the pilot should automatically scroll through three

navigation displays:

If instead it shows one of the following error displays then there is either a data format: wiring error or the position transducer is not set-up to transmit the required

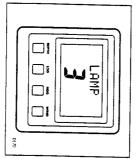
being a cabling error – either open circuit, short circuit or wires reversed This display indicates data is not being received. The most likely reason

position transducer handbook for further action. are too weak for reliable navigation. Reference should be made to the This indicates that the signals being received by the position transducer

the two instruments should be checked as follows: If the ST1000 is connected to a wind instrument then the data link between

Press the **Standby** and **Auto** keys together

The ST1000 should then display the locked heading preceded by a W as


flashing 'C' then wind data is not being received by the ST1000. If the display continues to show the current heading preceded with a

circuit or wires reversed. The most likely reason being a cabling error – either open circuit, short

SeaTalk bus

bus the link can be checked as follows: If the ST1000 has been linked to other SeaTalk instruments via the Seatalk

- Push **Standby** on the autopilot
- Select display illumination level 3 on any other SeaTalk instrument or autopilot control unit

illumination. The ST1000 should immediately respond by switching on its display

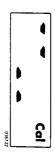
control unit. SeaTalk cabling between the ST1000 control head and the instruments/ If the illumination does not switch on then a cabling fault exists in the

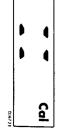
6.2 Initial Sea trial

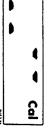
now required to complete the setting up. Having checked that the system is functioning correctly a short seatrial i

safe stable autopilot control for the majority of vessels (see section 4.3). characteristics. As supplied from the factory the unit is calibrated to provid tuned to suit the individual vessel, its steering system and dynamic steering The ST1000 has a built-in calibration capability which enables it to be fine

levels be checked and if necessary reset to the recommended levels. Before carrying out the first sail trial it is recommended that the calibratic


This procedure will only take a minute or so and full details are given in


- Do not attempt to make any permanent change to the recommended calibration values until a sail trial has been carried out
- It is important that the initial sail trial is carried out in conditions of light wind and calm water so that autopilot performance can be assessed without the influence of strong winds or large waves


Automatic Compass deviation correction

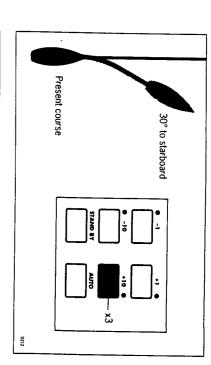
preferably in flat water. may result in the autopilot performance being impaired on some compas vital to carry out the Compass Deviation Correction. Failure to do so deviating magnetic fields. Before carrying out the initial sail trial it is headings. This procedure should be carried out in calm conditions The ST1000 will correct its own internal fluxgate compass for most

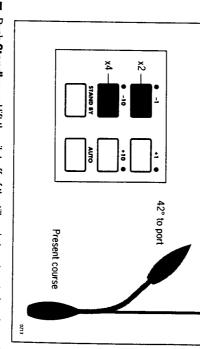
- Place the pilot over the tiller pin Select compass correction as follows:
- Push and hold Standby for 1 second

Use the $+1^{\circ}$ and -1° course change keys to increase or decrease the displayed heading until it agrees with the ships steering compass or a known transit bearing.

Exit compass adjust and store the compass correction/alignment as follows:

- Push and hold Standby for 1 second
- or, to exit compass adjust without saving any new settings
- Push Standby momentarily


Note: For installations where an ST50 Steering Compass Instrument is connected to the SeaTalk bus **and** the Steering Compass has a fluxgate transducer connected, it is only necessary to carry out the auto deviation correction on the Steering Compass Instrument (refer to Steering Compass handbook instructions).


Autopilot operation

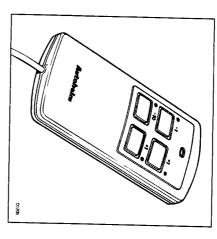
Having calibrated the compass the following proceedure is recommended to familiarise yourself with autopilot operation:

- Steer onto a compass heading and hold the course steady
- Place the autopilot over the tiller pin
- Push **Auto** to lock onto the current heading. In calm sea conditions a constant heading will be achieved
- Alter course to port or starboard in multiples of 1° and 10°

Chapter 6: Functional Test and Initial Sea Trial

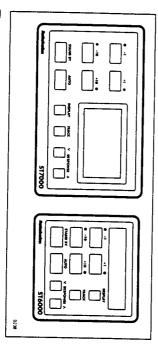
Push Standby and lift the pilot off of the tiller pin to return to hand steering

Operating sense reversal

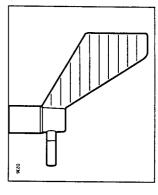

The operating sense of the Autopilot can be reversed as follows:

- Press the +1 and -1 keys toogether for 5 seconds.
- The new operating sense (port or starboard) will be displayed for 5 seconds after which the autopilot will go back to normal operation.

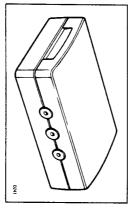
Chapter 7: Accessories


Various accessories are available for your ST1000 autopilot. These include:

Handheld remote control (Z101)


The handheld remote is supplied with 6m (20ft) of cable and a waterproof plug and socket. It allows you remote access to the four autopilot course change buttons

Fixed control units – ST7000 (Z082), ST6000 (Z124)


These control units are available for permanent mounting at additional positions where autopilot control is desired.

Digital Windvane (2087)

The digital windvane also requires the SeaTalk interface. When combined with the ST1000 these two pieces of equipment allow you to steer your boat on any course relative to an apparent wind angle.

SeaTalk Interface (Z137)

The SeaTalk Interface will convert all SeaTalk data to NMEA 0183. This allows you to feed NMEA 0183 Navigation data to a plotter or Speed and Compass NMEA information back to a position transducer for dead reckoning (Assuming the correct instruments are present on the SeaTalk bus to generate the information initially).

Chapter 8: Maintenance

- In certain conditions, condensation may appear on the window. This will not harm the unit, and can be cleared by switching on the illumination
- Never use any chemical or abrasive materials to clean your ST1000. If it becomes dirty wipe clean with a damp cloth

Cabling

- Avoid running cables through bilges where possible and secure any coiled lengths at regular intervals
- Avoid running cables close to flurescent lights, engines, radio transmitting equipment etc
- Check cabling for chafing or damage to outer casing, replace where necessary and re-secure

Advice

Should any difficulties arise, please consult Nautech's Product Support department in the U.K. or your own National Distributor who will be able to provide expert assistance.

The working parts of the drive system are sealed and lubricated for life during manufacture and therefore do not require servicing.

Before the unit is returned please double check that the power supply cable is sound and that all connections are tight and free from corrosion. Then refer to the fault finding section of this manual. If the fault cannot be traced then please contact your nearest Autohelm dealer or Service center for advice.

Always quote the serial number, which is printed on the label on the underside of the autopilot.

Chapter 9: Fault Finding

All Autohelm products are subject to a comprehensive test procedure prior to packing and shipment. In the unlikely event that a fault does arise the following check list should help cure the problem.

	Fault	Cause	Action
	Autopilot display blank	No supply	Check supply. Check Fuse/breaker. Return head for repair
1	Drive unit steers helm hard over as soon as Auto is engaged	Drive phase set incorrectly	Refer to chapter 6 and carry out the functional test.
	Displayed compass heading does not agree with Ships compass	Compass requires deviation correction and alignment	Refer to chapter 6 Automatic compass deviation correction
	Vessel turns slowly and takes a long time to come onto course	Rudder gain too low	Refer to chapter 3 Setting up Rudder gain
	Vessel overshoots when turning onto a new course	Rudder gain too high	Refer to chapter 3 Setting up Rudder gain
	Pilot appears to be unstable on Northerly headings (Southerly in Southern hemisphere)	Northerly/Southerly heading correction not set-up	Refer to chapter 4 Autopilot re-calibration and set-up levels 10 and 11
	Display shows Cal – Off when entering calibration	Calibration locked out	Security protection switched on by owner
	Autopilot will not talk to other SeaTalk instruments or Control units	Cabling problem	Check security of all SeaTalk connectors and cables
	Autopilot will not receive information from a Position Transducer(GPS, Loran etc.)	Position Transducer not transmitting correct sentances	Refer to relevant SeaTalk handbook for information on required NIMEA data
	Pilot will not auto-advance between waypoints	No Bearing to waypoint information transmitted from the position transducer	Refer to position transducer handbook
	Pilot will not display Distance to waypoint, Bearing to waypoint or waypoint number	EA sentances ron Position	1

Index

Auto 8 Automatic Tack (Auto Tack) 13 (Autoseastate) 12 Automatic Heading deadband Autopilot Re-Calibration 29 Accessories 58 Sea Talk interface 59 Windvane 59 Hand held control unit 58 Additional Control units 58

Cruise Speed (Calibration Level 5) 31 Calibration 29 Disabled access 35

Exiting calibration 30

correction (Calibration Level 10) 32 Northerly/Southerly heading error

Recording settings 30

Suggested settings 30

Compass deviation correction 55

Cross track error 21

Operating sense 52 Navigation interface 53

Fault finding 61

Dodge 10

Functional test 52

Basic Principals (Operation) 7

Cable connections 48

Entering calibration 29

Factory settings 30

Latitude (Calibration Level 11) 33

Magnetic variation (Calibration Level 9) 32

Off course alarm limit (Calibration Level 6)

Rudder Gain (Calibration Level 1) 31

Variation (Calibration Level 9) 32

Compass alignment 56

Course changes 9

Fuse ratings 49,50 SeaTalk bus 54 Wind transducer interface 54

Hand held Remote Control Unit 58

Pedestal socket mounting tiller pins 46 Cantilever mounting 45 Push rod Accessories 42 Installation Accessories 42 Illumination 14 iller brackets 43

Mounting Socket 40 Magnetic Variation 32 Maintenance 60

Northerly heading error 32

Operating sense 52 Off course alarm 14

Power Supply 49 Port Hand mounting 57

Rudder Gain 27

Safety 4

Sealalk

SeaTalk Socket 48 Operation with other SeaTalk Connection to bus 50 instruments 50,3

Functional test 52 Power Cabling 49 SeaTalk data cabling 50 Mounting 50 Installation 48

Southerly turning error 32

Standby 8 Seatrial 52

Iller pin 40 Facking (Autotack) 13

Frack Control 20,11

Automatic aquisition 20 Manual aquisition 20 Large cross track error warning 25 Data error warning 25 Cross Track error 21

No data warning 25

Waypoint Advance 22 Operating limitations 23 Operating hints 20 Operation at Lowspeed 23

Warning messages 25

Windvane (Windtrim) 26,11 Waypoint advance 22,25 Warning messages 25 Accessory 59

Windshift alarm 26

